On Gromov–Witten invariants of P
نویسندگان
چکیده
We propose a conjectural explicit formula of generating series of a new type for Gromov–Witten invariants of P of all degrees in full genera.
منابع مشابه
The Crepant Resolution Conjecture for [sym 2 P 2 ]
The crepant resolution conjecture states that the Gromov–Witten invariants of an orbifold X should be determined in a precise way by the Gromov–Witten invariants of a crepant resolution of its coarse moduli space. We compute the Gromov–Witten invariants of the stack symmetric square of P 2 and compare them with the Gromov– Witten invariants of its crepant resolution, Hilb 2 P 2 (which were comp...
متن کاملA Combinatorial Case of the Abelian-nonabelian Correspondence
The abelian-nonabelian correspondence outlined in [BCFK08] gives a broad conjectural relationship between (twisted) Gromov-Witten invariants of related GIT quotients. This paper proves a case of the correspondence explicitly relating genus zero mpointed Gromov-Witten invariants of Grassmannians Gr(2, n) and products of projective space P ×P. Computation of the twisted Gromov-Witten invariants o...
متن کاملElliptic Gromov-Witten Invariants And Virasoro Conjecture
The Virasoro conjecture predicts that the generating function of Gromov-Witten invariants is annihilated by infinitely many differential operators which form a half branch of the Virasoro algebra. This conjecture was proposed by Eguchi, Hori and Xiong [EHX2] and also by S. Katz [Ka] (see also [EJX]). It provides a powerful tool in the computation of Gromov-Witten invariants. In [LT], the author...
متن کاملGromov-witten Invariants of P1 and Eynard-orantin Invariants
We prove that stationary Gromov-Witten invariants of P1 arise as the Eynard-Orantin invariants of the spectral curve x = z + 1/z, y = ln z. As an application we show that tautological intersection numbers on the moduli space of curves arise in the asymptotics of large degree Gromov-Witten invariants of P1.
متن کاملGromov-Witten Invariants of Blow-ups Along Points and Curves
In this paper, usng the gluing formula of Gromov-Witten invariants under symplectic cutting, due to Li and Ruan, we studied the Gromov-Witten invariants of blow-ups at a smooth point or along a smooth curve. We established some relations between Gromov-Witten invariants of M and its blow-ups at a smooth point or along a smooth curve.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017